Railroad Technology

Railroad Technology

Glass fiber reinforced plastics (GFRP)

Do you want to learn more about your fiberglass components?
Would you like to take a deeper look into your components before they are delivered to customers?
Our OCT technology makes it possible by enabling you to detect defects, cracks, local fiber orientation etc.

Carbon fiber reinforced composites - CFRP

In the mainly manual production process of CFRP components delamination, inclusions and inner cracks represent critical problems for the mechanical strength. These errors are not visible from the outside because of the black coloring of the material. Using Laser-Ultrasound components can be scanned non-destructively and imperfections can be detected.

Casting process

For the casting of metals it may be interesting to monitor the depth of melting, but also to find hot cracks (aka solidification crack) in the freshly cast and still hot bars. Both is possible with Laser-Ultrasonics and was already investigated at RECENDT. In the figure a reconstruction and the corresponding photo of the cross section through a circular ingot of aluminum can be seen, which has an obvious center crack.

Tribological coatings

Metallic components are often coated dielectrically in order to optimize the operating characteristics (such as tribology).
With Terahertz technology (THz) such coatings can be measured efficiently inline.

3D printing / generative manufacturing / additive manufacturing

In recent years the rapid development and quality improvements in the field of 3D printing for plastic and metal components has enabled many applications, including the serial production of critical components. Using the OCT inspection technique (for plastics, ceramics) and Laser-Ultrasonics (for metals, hard plastics) allow the detection of certain defects offline or even inline and thus enable to monitor the process closely in order to set corrective actions if needed.

Hidden (adhesive-) layers

With the Terahertz technology (THz) it is possible to look through relatively thick plastic layers and test hidden layers non-destructively (e.g. adhesive layers). The terahertz waves used are not harmful for health (no ionizing radiation), but still make it possible to look inside many optically non-transparent materials.

Microstructure of metals in-situ

By offering the possibility to investigate glowing samples, Laser-Ultrasound also enables the determination of in-situ metallurgical information during thermo-mechanical cycles of new steel grades. Therefor, samples can be inductively heated and deformed in our modified quenching and deformation dilatometer (by Linseis Messgeraete). From the measured parameters, like speed of sound and acoustic damping, it is possible to conclude on grain growth, phase transitions and texture changes with appropriate calibration.

Hardness penetration depth in steel

The determination of the hardness penetration depth in thermally hardened components is essential for quality control. State-of-the-art is to cut samples and do etching and hardness measurements. Laser-Ultrasonics opens a non-destructive alternative. Thereby, zones of different microstructures at arbitrary positions can be imaged up to a tomographic representation of the hardness penetration depth.

Inline quality assurance in welding

Non-destructive testing of welds is possible with Laser-Ultrasound. Thanks to the good automation capacity also inline measurements at high speed can be carried out, depending on the required resolution. With a repetition rate of 10 Hz, 100 Hz or even higher, flaws, inclusions, hot cracks and pore concentrations can be found. 

Spot welding

By means of Laser-Ultrasound also spot welds can be scanned in a short time and zones of actual material connection (weld nugget) can be imaged and evaluated.