Energy Efficiency

Energy Efficiency

Process monitoring during heat treatment of metals

Heat treatment of metals is a standard process to bring controlled changes in the microstructure and thereby set the desired mechanical properties in the material.
However, currently used methods for microstructure analysis (micrographs, dilatometry, tensile tests, ...) have the disadvantage that they either cannot be used directly in the process or require special sample geometries. By measuring plate resonances on sheet metal specimens using laser ultrasound, Poisson's ratio and, if the thickness is known, also the longitudinal and transverse sound velocity can be determined without contact and with high time resolution during heat treatment (e.g., in a thermal simulator). The temperature variation of these parameters correlates with changes in the microstructure, allowing phase transitions to be monitored using this method.

Further information can be found in our publication:

EEffG - The federal energy-efficiency-law

The energy-efficiency-law (EEffG) was created in 2014 with an aim to improve the energy efficiency of industrial enterprises by 20%. We can provide the support to help achieve these goals. By improving energy efficiency your company can also save a lot of money. Additionally, the EEffG develops a market for efficiency-enhancement-activities.
With our range of technologies in each of our research areas, we are able to support you.   

PAC – The research network

Process Analytical Technologies (e.g. Infrared Spectroscopic Methods) are able to monitor chemical processes inline and control them precisely, which enables perfect optimization.
We have conducted intensive research in this field since 2010 and can act as your contact point to the entire research network PAC -

Process optimization for batch-processes or continuous-processes

Through exact knowledge of the current conditions in a batch-reactor or in a continuous process, the chemical processes can be regulated precisely. Therefore it is often possible to reduce process temperature and time reserves. Energy saving significantly raises profits, and leads to a quick amortization of such process optimization. Our Spectroscopy experts can support you!

Visualization of multilayer structures

As illustrated in this example of an organic photovoltaic cell, multilayer structures can be measured and analysed with OCT (Optical Coherence Tomography). Organic PV-cells consist of organic semiconducting materials, transparent electrodes, and a protective coating. As a result of this, a homogeneous layer structure without defects, inclusions etc. is relevant for the quality, functionality, and long-lasting performance of the product.

Casting process

For the casting of metals it may be interesting to monitor the depth of melting, but also to find hot cracks (aka solidification crack) in the freshly cast and still hot bars. Both is possible with Laser-Ultrasonics and was already investigated at RECENDT. In the figure a reconstruction and the corresponding photo of the cross section through a circular ingot of aluminum can be seen, which has an obvious center crack.

Energy, resources, and raw material efficiency

Using process-integrated techniques from the NDT (Non-Destructive Testing) technologies portfolio means that errors can be identified at an early stage – saving time, energy, and cost.
With direct control of your processes, you can always operate them optimally without compromise. This results in a reduction of energy input, materials consumption, and process time. Through 100% quality control, only certified zero-defect products are delivered to the customers.
Dare to go to the limits within product and process design – through integrated process analytics and 100% quality control you save time and money, and it’s hassle-free. We can support you in these matters!