Aeronautics

Aeronautics

Carbon fiber reinforced composites - CFRP

In the mainly manual production process of CFRP components delamination, inclusions and inner cracks represent critical problems for the mechanical strength. These errors are not visible from the outside because of the black coloring of the material. Using Laser-Ultrasound components can be scanned non-destructively and imperfections can be detected.

Glass fiber reinforced plastics (GFRP)

Do you want to learn more about your fiberglass components?
Would you like to take a deeper look into your components before they are delivered to customers?
Our OCT technology makes it possible by enabling you to detect defects, cracks, local fiber orientation etc.

Fiber directions in composite materials

Do you want to gain a deeper insight and understanding of interior properties of your fiber-reinforced plastics? Are you interested in the anisotropies of your components or do you need to determine the orientation of the fibers inside a CFRP-injection moulded component?
We can help with our Terahertz-Technology (THz), OCT technology, and Laser-Ultrasound Technology.

Tribological coatings

Metallic components are often coated dielectrically in order to optimize the operating characteristics (such as tribology).
With Terahertz technology (THz) such coatings can be measured efficiently inline.

3D printing / generative manufacturing / additive manufacturing

In recent years the rapid development and quality improvements in the field of 3D printing for plastic and metal components has enabled many applications, including the serial production of critical components. Using the OCT inspection technique (for plastics, ceramics) and Laser-Ultrasonics (for metals, hard plastics) allow the detection of certain defects offline or even inline and thus enable to monitor the process closely in order to set corrective actions if needed.

Polymer coatings

The OCT (Optical Coherence Tomography) provides insight into nearly all common polymer materials used in the industrial environment. As a tomographic measurement technique, OCT delivers information about the internal structure in order to detect and characterise cracks, defects, inclusions, pores, etc. OCT not only controls the quality and functionality of the plastic products, but also delivers relevant information to help understand and optimize the manufacturing process.

Hidden (adhesive-) layers

With the Terahertz technology (THz) it is possible to look through relatively thick plastic layers and test hidden layers non-destructively (e.g. adhesive layers). The terahertz waves used are not harmful for health (no ionizing radiation), but still make it possible to look inside many optically non-transparent materials.

Testing of hidden adhesive layers

The homogeneity of adhesive layers, which is not visible or accessible after the joining process of the components, should often be tested. The modern technique of Photoacoustic Imaging provides a solution in such cases. For example you can see here (b) errors in the adhesive layer between (a) a non-transparent plastic component and a metal component – and (c) the adhesive surface in a PAI-Scan.

Hardness penetration depth in steel

The determination of the hardness penetration depth in thermally hardened components is essential for quality control. State-of-the-art is to cut samples and do etching and hardness measurements. Laser-Ultrasonics opens a non-destructive alternative. Thereby, zones of different microstructures at arbitrary positions can be imaged up to a tomographic representation of the hardness penetration depth.

Microstructure of metals in-situ

By offering the possibility to investigate glowing samples, Laser-Ultrasound also enables the determination of in-situ metallurgical information during thermo-mechanical cycles of new steel grades. Therefor, samples can be inductively heated and deformed in our modified quenching and deformation dilatometer (by Linseis Messgeraete). From the measured parameters, like speed of sound and acoustic damping, it is possible to conclude on grain growth, phase transitions and texture changes with appropriate calibration.

Energy, resources, and raw material efficiency

Using process-integrated techniques from the NDT (Non-Destructive Testing) technologies portfolio means that errors can be identified at an early stage – saving time, energy, and cost.
With direct control of your processes, you can always operate them optimally without compromise. This results in a reduction of energy input, materials consumption, and process time. Through 100% quality control, only certified zero-defect products are delivered to the customers.
Dare to go to the limits within product and process design – through integrated process analytics and 100% quality control you save time and money, and it’s hassle-free. We can support you in these matters!